Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anaerobe ; 83: 102787, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37827238

RESUMO

OBJECTIVES: This study aimed to elucidate mechanistic explanation(s) for compositional changes to enteric microbiota by determining the impacts of continuous nicotine/cotinine exposure on representative gastrointestinal bacteria and how these alterations impact innate immune cell plasticity. METHODS: In vitro cultures of the gastrointestinal bacteria (Bacteroides fragilis 25285, Prevotella bryantii B14, and Acetoanaerobium sticklandii SR) were continuously exposed to nicotine or cotinine. Supernatant samples were collected for fermentation acid analysis. Vesicles were collected and analyzed for physiological changes in number, size, and total protein cargo. Cultured macrophages were stimulated to a tolerogenic phenotype, exposed to control or altered (nicotine or cotinine - exposed) vesicles, and inflammatory plasticity assessed via inflammatory cytokine production. RESULTS: Nicotine/cotinine exposure differentially affected metabolism of all bacteria tested in a Gram (nicotine) and concentration-dependent (cotinine) manner. Physiological studies demonstrated changes in vesiculation number and protein cargo following nicotine/cotinine exposures. Continuous exposure to 1 µM nicotine and 10 µM cotinine concentrations reduced total protein cargo of Gram (-) - 25285 and B14 vesicles, while cotinine generally increased total protein in Gram (+) - SR vesicles. We found that theses physiological changes to the vesicles of 25285 and SR formed under nicotine and cotinine, respectively, challenged the plasticity of tolerogenic macrophages. Tolerogenic macrophages exposed to vesicles from 1 µM nicotine, and 5 or 10 µΜ cotinine cultures produced significantly less IL-12p70, TNFα, or KC/GRO, regardless of macrophage exposure to nicotine/cotinine. CONCLUSIONS: Nicotine/cotinine exposure differentially alters bacterial metabolism and vesicle physiology, ultimately impacting the inflammatory response of tolerogenic macrophages.


Assuntos
Cotinina , Nicotina , Nicotina/farmacologia , Nicotina/análise , Nicotina/metabolismo , Cotinina/análise , Cotinina/metabolismo , Macrófagos/metabolismo , Bactérias/metabolismo
2.
Adv Healthc Mater ; 12(27): e2301163, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37377147

RESUMO

Tumor-associated macrophages are the predominant immune cells present in the tumor microenvironment and mostly exhibit a pro-tumoral M2-like phenotype. However, macrophage biology is reversible allowing them to acquire an anti-tumoral M1-like phenotype in response to external stimuli. A potential therapeutic strategy for treating cancer may be achieved by modulating macrophages from an M2 to an M1-like phenotype with the tumor microenvironment. Here, programmed nanovesicles are generated as an immunomodulatory therapeutic platform with the capability to re-polarize M2 macrophages toward a proinflammatory phenotype. Programmed nanovesicles are engineered from cellular membranes to have specific immunomodulatory properties including the capability to bidirectionally modulate immune cell polarization. These programmed nanovesicles decorated with specific membrane-bound ligands can be targeted toward specific cell types including immune cells. Macrophage-derived vesicles are engineered to enhance immune cell reprogramming toward a proinflammatory phenotype.


Assuntos
Macrófagos , Neoplasias , Humanos , Macrófagos/metabolismo , Neoplasias/metabolismo , Fenótipo , Imunomodulação , Microambiente Tumoral
3.
ACS Omega ; 7(50): 46222-46233, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36570199

RESUMO

T cells play an integral role in the generation of an effective immune response and are responsible for clearing foreign microbes that have bypassed innate immune system defenses and possess cognate antigens. The immune response can be directed toward a desired target through the selective priming and activation of T cells. Due to their ability to activate a T cell response, dendritic cells and endogenous vesicles from dendritic cells are being developed for cancer immunotherapy treatment. However, current platforms, such as exosomes and synthetic nanoparticles, are limited by their production methods and application constraints. Here, we engineer nanovesicles derived from dendritic cell membranes with similar properties as dendritic cell exosomes via nitrogen cavitation. These cell-derived nanovesicles are capable of activating antigen-specific T cells through direct and indirect mechanisms. Additionally, these nanovesicles can be produced in large yields, overcoming production constraints that limit clinical application of alternative immunomodulatory vesicle or nanoparticle-based methods. Thus, dendritic cell-derived nanovesicles generated by nitrogen cavitation show potential as an immunotherapy platform to stimulate and direct T cell response.

4.
Front Oncol ; 12: 1042730, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713536

RESUMO

Background: Ovarian cancer is a deadly female malignancy with a high rate of recurrent and chemotherapy-resistant disease. Tumor-associated macrophages (TAMs) are a significant component of the tumor microenvironment and include high levels of M2-protumor macrophages that promote chemoresistance and metastatic spread. M2 macrophages can be converted to M1 anti-tumor macrophages, representing a novel therapeutic approach. Vesicles engineered from M1 macrophages (MEVs) are a novel method for converting M2 macrophages to M1 phenotype-like macrophages. Methods: Macrophages were isolated and cultured from human peripheral blood mononuclear cells. Macrophages were stimulated to M1 or M2 phenotypes utilizing LPS/IFN-γ and IL-4/IL-13, respectively. M1 MEVs were generated with nitrogen cavitation and ultracentrifugation. Co-culture of ovarian cancer cells with macrophages and M1 MEVs was followed by cytokine, PCR, and cell viability analysis. Murine macrophage cell line, RAW264.7 cells were cultured and used to generate M1 MEVs for use in ovarian cancer xenograft models. Results: M1 MEVs can effectively convert M2 macrophages to an M1-like state both in isolation and when co-cultured with ovarian cancer cells in vitro, resulting in a reduced ovarian cancer cell viability. Additionally, RAW264.7 M1 MEVs can localize to ovarian cancer tumor xenografts in mice. Conclusion: Human M1 MEVs can repolarize M2 macrophages to a M1 state and have anti-cancer activity against ovarian cancer cell lines. RAW264.7 M1 MEVs localize to tumor xenografts in vivo murine models.

5.
Biology (Basel) ; 10(10)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34681047

RESUMO

Microglia act as the immune cells of the central nervous system (CNS). They play an important role in maintaining brain homeostasis but also in mediating neuroimmune responses to insult. The interactions between neurons and microglia represent a key process for neuroimmune regulation and subsequent effects on CNS integrity. However, the molecular mechanisms of neuron-glia communication in regulating microglia function are not fully understood. One recently described means of this intercellular communication is via nano-sized extracellular vesicles (EVs) that transfer a large diversity of molecules between neurons and microglia, such as proteins, lipids, and nucleic acids. To determine the effects of neuron-derived EVs (NDEVs) on microglia, NDEVs were isolated from the culture supernatant of rat cortical neurons. When NDEVs were added to primary cultured rat microglia, we found significantly improved microglia viability via inhibition of apoptosis. Additionally, application of NDEVs to cultured microglia also inhibited the expression of activation surface markers on microglia. Furthermore, NDEVs reduced the LPS-induced proinflammatory response in microglia according to reduced gene expression of proinflammatory cytokines (TNF-α, IL-6, MCP-1) and iNOS, but increased expression of the anti-inflammatory cytokine, IL-10. These findings support that neurons critically regulate microglia activity and control inflammation via EV-mediated neuron-glia communication. (Supported by R21AA025563 and R01AA025591).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...